Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Acta Biomater ; 178: 287-295, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395101

RESUMO

Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso­position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso­position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.


Assuntos
Infecções Bacterianas , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Fototerapia , Corantes , Infecções Bacterianas/tratamento farmacológico , Piridinas/farmacologia
2.
Clin Cosmet Investig Dermatol ; 17: 229-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292322

RESUMO

Adverse skin reactions caused by the COVID-19 vaccine have attracted considerable attention. As we all know, the development mechanism of some skin diseases is related to the gut and skin microbiome. A 78-year-old male patient who received the COVID-19 vaccine developed generalized eczema with multiple dense black patches over the body, a widespread rash, erosion, and scabs on his limbs, as well as facial edema. The patient experienced recurrent flare-ups after conventional treatment, but then recovered well without recurrence after undergoing three fecal microbial transplantation (FMT) treatments. This rare case is reported for the first time in this study. This report demonstrates the possible potential of FMT in targeting refractory skin diseases, such as eczema, as well as diseases associated with gut microbiota disturbance after vaccination.

3.
J Control Release ; 367: 354-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286337

RESUMO

Synergistic photothermal immunotherapy has attracted widespread attention due to the mutually reinforcing therapeutic effects on primary and metastatic tumors. However, the lack of clinical approval nanomedicines for spatial, temporal, and dosage control of drug co-administration underscores the challenges facing this field. Here, a photothermal agent (Cy7-TCF) and an immune checkpoint blocker (NLG919) are conjugated via disulfide bond to construct a tumor-specific small molecule prodrug (Cy7-TCF-SS-NLG), which self-assembles into prodrug-like nano-assemblies (PNAs) that are self-delivering and self-formulating. In tumor cells, over-produced GSH cleaves disulfide bonds to release Cy7-TCF-OH, which re-assembles into nanoparticles to enhance photothermal conversion while generate reactive oxygen species (ROSs) upon laser irradiation, and then binds to endogenous albumin to activate near-infrared fluorescence, enabling multimodal imaging-guided phototherapy for primary tumor ablation and subsequent release of tumor-associated antigens (TAAs). These TAAs, in combination with the co-released NLG919, effectively activated effector T cells and suppressed Tregs, thereby boosting antitumor immunity to prevent tumor metastasis. This work provides a simple yet effective strategy that integrates the supramolecular dynamics and reversibility with stimuli-responsive covalent bonding to design a simple small molecule with synergistic multimodal imaging-guided phototherapy and immunotherapy cascades for cancer treatment with high clinical value.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/uso terapêutico , Nanomedicina Teranóstica , Neoplasias/terapia , Fototerapia , Nanopartículas/química , Antígenos de Neoplasias , Imunoterapia , Dissulfetos , Linhagem Celular Tumoral
4.
Virology ; 590: 109966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100983

RESUMO

MicroRNAs (miRNAs) have the potential to be explored as antiviral products. It is known that miRNAs have different kinds of target mRNAs and different target sites in mRNAs, and that the action-modes of miRNAs at different target sites may be different. But there is no evidence demonstrating the significance of the differences for the regulation of viruses by miRNAs, which might be crucial for the exploration of miRNA-based antiviral products. Here the experimental studies about the antiviral effects of miRNAs, with validated target mRNAs and target sites in the mRNAs, were systematically collected, based on which the mechanisms whereby miRNAs regulated virus replication were systematically reviewed. And miRNAs' down-regulation rates on target mRNAs and antiviral rates were compared among the miRNAs with different target sites, to analyze the characteristics of action-modes of miRNAs at different target sites during virus replication.


Assuntos
MicroRNAs , Vírus , MicroRNAs/genética , Vírus/genética , Regulação para Baixo , Replicação Viral , RNA Mensageiro , Antivirais
5.
Influenza Other Respir Viruses ; 17(12): e13226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38090226

RESUMO

The sentinel hospital-based influenza-like illness (ILI) surveillance network was established in China since the 2009 H1N1 pandemic. This network plays important roles in monitoring influenza virus variation and identifying novel respiratory pathogens. In this study, we characterized the pathogen spectrum pattern (PSP) of ILI based on three sentinel hospitals and analyzed the significant change of PSP during the COVID-19 epidemic. The notable change of influenza virus spectrum was observed since the beginning of COVID-19 outbreak, and we found persistent domination of Victoria lineage of influenza B virus and "extinction" of A/H1N1, A/H3N2, and B/Yamagata during the dynamic Zero-COVID-19 pandemic in Nanchang, China. However, these strains intermittently co-circulated before the COVID-19.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Pandemias , COVID-19/epidemiologia , China/epidemiologia
6.
Front Microbiol ; 14: 1251683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920267

RESUMO

Introduction: Pathogen spectrum of Hand, foot and mouth disease (HFMD) has substantially changed in the past decade in China. Growing evidence has indicated that anti-COVID-19 nonpharmaceutical interventions (NPIs) can support control of various infectious diseases, including intestinal diseases. Methods: In this study, HFMD cases were enrolled from sentinel hospitals of Nanchang, Jiangxi province, and enteroviruses were genotyped using specific real time RT-PCR. We systematically characterized the epidemiology of HFMD based on the continuous molecular surveillance and estimated the impact of COVID-19 intervention on HFMD incidence using seasonal autoregressive integrated moving average (ARIMA) models. Results: A total of 10247 HFMD cases were included during 2010-2022, of which 6121 enterovirus (EV)-positive cases (59.7%) were identified by real-time RT-PCR. Over 80% cases were associated with EV-A71 and coxsackievirus A16 (CVA16) during 2010-2012, while the type distribution significantly changed as CVA6 emerged to be dominant, accounting for 22.6%-59.6% during 2013-2022. It was observed that the prevalence patterns of EV-A71 and CVA16 were similar and both of them peaked in the second quarter and then leveled off. However, CVA6 was generally prevalent around the fourth quarter, demonstrating a staggered prevalence during 2010-2019. During the COVID-19 epidemic, the seasonal HFMD epidemic peak was restrained, and the ARIMA analysis indicated that the COVID-19 intervention had mitigated EV transmission during the first COVID-19 outbreak in early 2020. In addition, bivariate Spearman's cross-correlation coefficients were estimated for the major types CVA6, CVA16 and EV-A71. Our analyses indicated the possible existence of correlations among CVA6, CVA16 and EV-A71 prevalence in the epidemiological level. Discussion: Taken together, the type distribution of HFMD has substantially changed over the last decade and CVA6 and CVA16 are currently the most predominant types co-circulating in Nanchang. The anti-COVID-19 NPIs significantly reduced the incidence of EV infections.

7.
ACS Macro Lett ; 12(11): 1583-1588, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937586

RESUMO

Hydrogen sulfide (H2S) is an important gaseous signaling molecule with unique pleiotropic pharmacological effects, but may be limited for clinical translation due to the lack of a reliable delivery form that delivers exogenous H2S to cells at action site with precisely controlled dosage. Herein, we report the design of a poly(thiourethane) (PTU) self-immolative polymer terminally caged with an acrylate moiety to trigger release of H2S in response to cysteine (Cys) and homocysteine (Hcy), the most used and independent indicators of neurodegenerative diseases. The synthesized PTU polymer was then coated with the red-blood-cell (RBC) membrane in the presence of solubilizing agent to self-assemble into nanoparticles with enhanced stability and cytocompatibility. The Hcy/Cys mediated addition/cyclization chemistry actuated the biomimetic polymeric nanoparticles to disintegrate into carbonyl sulfide (COS), and finally convert into H2S via the ubiquitous carbonic anhydrase (CA). H2S released in a controlled manner exhibited a strong antioxidant ability to resist Alzheimer's disease (AD)-related oxidative stress factors in BV-2 cells, a neurodegenerative disease model in vitro. Thus, this work may provide an effective strategy to construct H2S donors that can degrade in response to a specific pathological microenvironment for the treatment of neurodegenerative diseases.


Assuntos
Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Humanos , Cisteína , Sulfeto de Hidrogênio/química , Membrana Eritrocítica/metabolismo , Polímeros
8.
Anal Chem ; 95(42): 15818-15825, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815497

RESUMO

Engineering cell surfaces with macromolecules offers the potential to manipulate and control their phenotype and function for cell-based therapies. In situ construction and real-time evaluation of cell-macromolecule conjugates are vital for characterizing their dynamics, mobility, and function but remain a great challenge. Herein, we design a near-infrared (NIR) heptamethine cyanine (LS)-bearing dibenzocyclooctyne (DBCO) and norbornene (NB) in its structure for rapid and selective bioorthogonal "click" coupling to azide-labeled cells and tetrazine-functionalized macromolecular precursors. Specifically, only orthogonal dual "click" cell-macromolecule conjugates turn on NIR fluorescence, in which LS behaves as an AND logic gate, with azide- and tetrazine-derivatives being "input" and the emission intensity as the output. LS enables in situ construction and real-time evaluation of the process and functional effects that macromolecules "graft to" cells with high cytocompatibility. This probe is tailor-made for live-cell microscopy technologies, which may open new opportunities for promoting further developments in cell-tracking and cell-based therapies.


Assuntos
Azidas , Compostos Heterocíclicos , Azidas/química , Corantes , Corantes Fluorescentes/química
9.
Front Cell Infect Microbiol ; 13: 1263983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771695

RESUMO

The identification of the first human polyomavirus BK (BKV) has been over half century, The previous epidemiological and phylogenetic studies suggest that BKV prevailed and co-evolved with humans, leading to high seroprevalence all over the world. In general, BKV stays latent and symptomless reactivation in healthy individuals. BKV has been mainly interlinked with BKV-associated nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis (HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the mechanisms underlying BKV latency and reactivation are not fully understood and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC) since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in the scientific community. In this review, we mainly focus on advances of mechanisms of BKV latency and reactivation, and BKV-associated diseases or tumorigenesis with systematical review of formerly published papers following the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of cancers, head and neck cancer and urologic cancer, was systematically updated and discussed in depth. Besides, BKV may also play an infectious role contributing to HIV-associated salivary gland disease (HIVSGD) presentation. As more evidence indicates the key role of BKV in potential tumorigenesis, it is important to pay more attention on its etiology and pathogenicity in vitro and in vivo.


Assuntos
Vírus BK , Infecções por Polyomavirus , Humanos , Filogenia , Estudos Soroepidemiológicos , Infecções por Polyomavirus/complicações , Carcinogênese , Transformação Celular Neoplásica
10.
ACS Nano ; 17(16): 15605-15614, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503901

RESUMO

Immunotherapy is an advanced therapeutic strategy of cancer treatment but suffers from the issues of off-target adverse effects, lack of real-time monitoring techniques, and unsustainable response. Herein, an ultrasmall Au nanocluster (NC)-based theranostic probe is designed for second near-infrared window (NIR-II) photoluminescence (PL) imaging-guided phototherapies and photoactivatable cancer immunotherapy. The probe (Au44MBA26-NLG for short) is composed of atomically precise and NIR-II emitting Au44MBA26 NCs (here MBA denotes water-soluble 4-mercaptobenzoic acid) conjugated with immune checkpoint inhibitor 1-cyclohexyl-2-(5H-imidazo[5,1-a]isoindol-5-yl)ethanol (NLG919) via a singlet oxygen (1O2)-cleavable linker. Upon NIR photoirradiation, the Au44MBA26-NLG not only enables NIR-II PL imaging of tumors in deep tissues for guiding tumor therapy but also allows the leverage of photothermal property for cancer photothermal therapy (PTT) and the photogenerated 1O2 for photodynamic therapy (PDT) and releasing NLG919 for cancer immunotherapy. Such a multiple effect modulated by Au44MBA26-NLG prompts the proliferation and activation of effector T cells, upshifts systemic antitumor T-lymphocyte (T cell) immunity, and finally suppresses the growth of both primary and distant tumors in living mice. Overall, this study may provide a promising theranostic nanoplatform toward NIR-II PL imaging-guided phototherapies and photoactivatable cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Luminescência , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Fototerapia/métodos , Imunoterapia , Nanomedicina Teranóstica/métodos
11.
Chem Sci ; 14(16): 4308-4318, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123188

RESUMO

Developing a high-performance noninvasive probe for precise cancer theranostics is very challenging but urgently required. Herein, a novel Au nanoclusters (NCs)-based probe was designed for cancer theranostics via ligand engineering by conjugating photoluminescent (PL) Au44 NCs in the second near-infrared window (NIR-II, 1000-1700 nm) with aromatic photoacoustic (PA)/photothermal molecules through click chemistry. This design bypasses the incompatibility dilemma between photoluminescence (PL) attributes and PA/photothermal properties because the rigidity of the PA/photothermal molecules can lead to aggregation-induced emission (AIE) of the Au(i)-ligand shell of the Au NCs by constraining their nonradiative relaxation. Benefiting from strong NIR-II PL with emissions at 1080 and 1240 nm, high photothermal conversion efficiency (65.12%), low cytotoxicity, appropriate renal clearance, and enhanced permeability and retention (EPR) effect, the as-designed Au NC-based theranostic probe achieves ultradeep NIR-II PL/PA imaging-guided cancer photothermal therapy (PTT). Remarkably, 16 days after photothermal treatment guided by NIR-II PL/PA imaging, mice were all healed without tumor recurrence, while the average life span of the mice in the control groups was only 17-21 days. This study is interesting because it provides a paradigm for designing a metal NC-based theranostics probe, and it may add fundamentally and methodologically to noninvasive imaging-guided disease therapy.

12.
Theranostics ; 13(1): 267-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593965

RESUMO

Rationale: Fluorescently traceable prodrugs, which can monitor their biodistribution in vivo and track the kinetics of drug delivery in living cells, are promising for constructing theranostic medicines. However, due to their charge and hydrophobicity, most of the fluorescently traceable prodrugs exhibit high protein binding and non-specific tissue retention affecting in vivo distribution and toxicity, with high background signals. Methods: Herein, the zwitterionic rhodamine (RhB) and camptothecin (CPT) were bridged with a disulfide bond to construct a tumorous heterogeneity-activatable prodrug (RhB-SS-CPT). The interaction of zwitterionic RhB-SS-CPT with proteins was detected by UV and fluorescence spectroscopy, and further demonstrated by molecular docking studies. Then, intracellular tracking and cytotoxicity of RhB-SS-CPT were determined in tumor and normal cells. Finally, the in vivo biodistribution, pharmacokinetics, and anticancer efficacy of RhB-SS-CPT were evaluated in a mouse animal model. Results: The tumorous heterogeneity-activatable RhB-SS-CPT prodrug can self-assemble into stable nanoparticles in water based on its amphiphilic structure. Particularly, the zwitterionic prodrug nanoparticles reduce the non-specific binding to generate a low background signal for better identification of cancerous lesions, achieve rapid internalization into cancer cells, selectively release bioactive CPT as a cytotoxic agent in response to high levels of GSH and H2O2, and exhibit high fluorescence that contributes to the visual chemotherapy modality. In addition, the RhB-SS-CPT prodrug nanoparticles show longer circulation time and better antitumor activity than free CPT in vivo. Interestingly, the zwitterionic nature allows RhB-SS-CPT to be excreted through the renal route, with fewer side effects. Conclusions: Zwitterionic features and responsive linkers are important considerations for constructing potent prodrugs, which provide some useful insights to design the next-generation of theranostic prodrugs for cancer.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Peróxido de Hidrogênio/uso terapêutico , Camptotecina/farmacologia , Camptotecina/química , Rodaminas , Distribuição Tecidual , Simulação de Acoplamento Molecular , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral
13.
Acta Biomater ; 157: 408-416, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549634

RESUMO

Photothermal therapy has become a promising approach as precision medicine to allow spatial control of therapeutic effect only in the site of interest. However, the full potential of PTT has not been realized due to the lack of simple photosensitizers (PSs) that can overcome multistage biological barriers and improve theranostic efficiency. Here, we develop a small molecule-based PS to enhance tumor-specific PTT by programming multistage transport and activation properties in molecular architecture. This PS can self-assemble into stable nanoparticles that accumulate passively in tumor, and then actively internalize through ligand-mediated endocytosis. Subsequently, the programmable degradable linkers are selectively cleaved, enabling size shrinkage for better tumor penetration, binding albumin to enhance the near-infrared fluorescence for low-background imaging, and activating photothermal conversion for tumor suppression. The self-delivery process can be programmed, representing the first multistage small-molecule nano-photosensitizer that overcomes multiple biological barriers and improves the PTT index of tumor. STATEMENT OF SIGNIFICANCE: Photothermal therapy has become a promising approach as precision medicine, but has not been realized due to the lack of simple photosensitizers that can overcome multistage biological barriers and improve theranostic efficiency. In this contribution, we solve this dilemma by developing a small molecule-based photosensitizer by programming multistage transport and activation properties in molecular architecture, which could self-assemble into stable nanoparticles that accumulate passively in tumor, and actively internalized through ligand-mediated endocytosis. Subsequently, the programmable activation by ROS triggered size reduction for tumor penetration and minimized the phototoxicity to normal tissue. The activatable fluorescence and photothermal properties made the photosensitizer intrinsically suitable for multimodal imaging-guided PTT, providing a promising supramolecular nanomedicine towards tumor precise diagnosis and therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Terapia Fototérmica , Linhagem Celular Tumoral , Ligantes , Nanopartículas/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Imagem Multimodal , Nanomedicina Teranóstica/métodos , Fototerapia/métodos
14.
Oncologist ; 28(1): e36-e44, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36398872

RESUMO

BACKGROUND: SHR7390 is a novel, selective MEK1/2 inhibitor. Here, we report results from two phase I trials conducted to evaluate the tolerability, safety and antitumor activity of SHR7390 monotherapy for advanced solid tumors and SHR7390 plus camrelizumab for treatment-refractory advanced or metastatic colorectal cancer (CRC). PATIENTS AND METHODS: Patients received SHR7390 alone or combined with fixed-dose camrelizumab (200 mg every 2 weeks) in an accelerated titration scheme to determine the maximum tolerated dose (MTD). A recommended dose for expansion was determined based on the safety and tolerability of the dose-escalation stage. The primary endpoints were dose limiting toxicity (DLT) and MTD. RESULTS: In the SHR7390 monotherapy trial, 16 patients were enrolled. DLTs were reported in the 1.0 mg cohort, and the MTD was 0.75 mg. Grade ≥3 treatment-related adverse events (TRAEs) were recorded in 4 patients (25.0%). No patients achieved objective response. In the SHR7390 combination trial, 22 patients with CRC were enrolled. One DLT was reported in the 0.5 mg cohort and the MTD was not reached. Grade ≥3 TRAEs were observed in 8 patients (36.4%), with the most common being rash (n=4). One grade 5 TRAE (increased intracranial pressure) occurred. Five patients (22.7%) achieved partial response, including one of 3 patients with MSS/MSI-L and BRAF mutant tumors, one of 15 patients with MSS/MSI-L and BRAF wild type tumors, and all 3 patients with MSI-H tumors. CONCLUSIONS: SHR7390 0.5 mg plus camrelizumab showed a manageable safety profile. Preliminary clinical activity was reported regardless of MSI and BRAF status.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas B-raf , Humanos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
15.
Nat Commun ; 13(1): 7581, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481736

RESUMO

This phase 2 study assesses the efficacy and safety of camrelizumab (an anti-PD-1 antibody) plus famitinib (anti-angiogenic agent) in women with pretreated recurrent or metastatic cervical cancer (ClinicalTrials.gov NCT03827837). Patients with histologically or cytologically confirmed cervical squamous cell carcinoma experiencing relapse or progression during or after 1-2 lines of systemic therapy for recurrent or metastatic disease are enrolled. Eligible patients receive camrelizumab 200 mg intravenously on day 1 of each 3-week cycle plus famitinib 20 mg orally once daily. The primary endpoint is the objective response rate. Secondary endpoints are duration of response, disease control rate, time to response, progression-free survival, overall survival, and safety. The trial has met pre-specified endpoint. Thirty-three patients are enrolled; median follow-up lasts for 13.6 months (interquartile range: 10.0-23.6). Objective responses are observed in 13 (39.4%, 95% confidence interval [CI]: 22.9-57.9) patients; the 12-month duration of response rate is 74.1% (95% CI: 39.1-90.9). Median progression-free survival is 10.3 months (95% CI: 3.5-not reached) and the 12-month overall survival rate is 77.7% (95% CI: 58.9-88.7). All patients experience treatment-related adverse events; grade ≥3 events occur in 26 (78.8%) patients. Treatment-related serious adverse events and deaths are observed in 9 (27.3%) and 2 (6.1%) patients, respectively. Camrelizumab plus famitinib shows promising antitumor activity with a manageable and tolerable safety profile in patients with pretreated recurrent or metastatic cervical squamous cell carcinoma. This combination may represent a treatment option for this population.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico
16.
Anal Chem ; 94(27): 9775-9784, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35759408

RESUMO

Near-infrared (NIR) photothermal transduction agents (PTAs) with large rigid π-extended and planar structures are prone to aggregate in a physiological environment where their emission is often quenched due to the strong intermolecular dipole-dipole or π-π interactions. This aggregation-caused quenching effect greatly impedes their applications in image-guided photothermal theranostics. Herein, we made an interesting finding that engineering a bioinspired protein corona (PC), once thermodynamically stabilized in preferred orientations on PTA nanoaggregates, can produce brilliant NIR fluorescence with a high quantum yield (∼6.2%) without compromising their photothermal properties. Both experimental data and computational modeling suggest that the mechanism of fluorescence enhancement is due to the high-affinity binding of nano-sized PTA to albumin, which regulates the molecular conformation and aggregation state of PTA. High spatial and temporal resolution imaging of albumin PC-coated PTA aggregates enables image-guided photothermal therapy for cancer cells in sentinel lymph nodes to remarkably inhibit pulmonary metastasis. Such a treatment combined with the surgical removal of the primary tumor can prolong animal survival, which is a promising candidate for clinical applications in the treatment of advanced metastatic cancers.


Assuntos
Neoplasias , Coroa de Proteína , Albuminas/química , Animais , Linhagem Celular Tumoral , Fluorescência , Neoplasias/terapia , Imagem Óptica , Fototerapia , Nanomedicina Teranóstica/métodos
17.
Acta Biomater ; 148: 142-151, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690327

RESUMO

Photothermal therapy has been extensively studied to improve the light-to-heat efficiency for tumor ablation, but could cause severe damage to adjacent healthy tissue due to the thermal transfer, the random distribution of photothermal agents (PTAs), or combination hereof. Herein, we solve this dilemma with a material design strategy to develop a P(AAm-co-AN)-b-P(NIPAM-co-DMAa)-b-P(AAm-co-AN) ABA triblock copolymer by RAFT polymerization, which exhibits both UCST and LCST dual thermo-responsive behaviors in aqueous solution. The P(AAm-co-AN) block with appropriate AN content allows to finely tune its UCST to ∼ 43°C, which can effectively co-assemble with camptothecin (CPT) and Cy7-TCF, a near-infrared (NIR) PTA, realizing the photo-activated "on-demand" release of CPT and Cy7-TCF. The LCST of P(NIPAM-co-DMAa) segment is adjusted to ∼ 53°C by varying DMAa content, enabling an irreversible sol-to-gel transition. The heat transfer in hydrogel and heat dissipation at the interface of hydrogel-adjacent tissue are limited, resulting in selectively cell killing in tumor, with little hyperthermia in adjacent tissues. Moreover, the hydrogel continues to release CPT to enhance the synergistic efficacy of PTT with chemotherapy. These results suggest that dual thermo-responsive polymer can contribute PTT with high selectivity and negligible side effects for precise medicine. STATEMENT OF SIGNIFICANCE: Photothermal therapy exploits the susceptibility of tumor cells toward external light-induced hyperthermia, but can cause severe damage to adjacent healthy tissue due to thermal transfer, random distribution of photothermal agents (PTAs), or combination hereof. Here, we solve this dilemma by developing a P(AAm-co-AN)-b-P(NIPAM-co-DMAa)-b-P(AAm-co-AN) triblock copolymer with UCST and LCST dual thermo-responsive behaviors, realizing the sequential micelle-unimer-hydrogel phase transitions. The polymer can effectively encapsulate PTA/drug, achieve long systemic circulation, accumulate in tumor through EPR effect, regulate drug release by controlling tumor temperature above UCST via irradiation, and finally exhibit a sol-gel transition, eradicating the heat transfer to adjacent tissue. This represents a practicable strategy to guide the design of next-generation polymeric vector that can contribute PTT with negligible side effects.


Assuntos
Hipertermia Induzida , Polímeros , Liberação Controlada de Fármacos , Hidrogéis , Hipertermia Induzida/métodos , Micelas
18.
Front Plant Sci ; 13: 866301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498698

RESUMO

Canopy chlorophyll content (CCC) indicates the photosynthetic functioning of a crop, which is essential for the growth and development and yield increasing. Accurate estimation of CCC from remote-sensing data benefits from including information on leaf chlorophyll and canopy structures. However, conventional nadir reflectance is usually subject to the lack of an adequate expression on the geometric structures and shaded parts of vegetation canopy, and the derived vegetation indices (VIs) are prone to be saturated at high CCC level. Using 3-year field experiments with different wheat cultivars, leaf colors, structural types, and growth stages, and integrated with PROSPECT+SAILh model simulation, we studied the potential of multi-angle reflectance data for the improved estimation of CCC. The characteristics of angular anisotropy in spectral reflectance were investigated. Analyses based on both simulated and experimental multi-angle hyperspectral data were carried out to compare performances of 20 existing VIs at different viewing angles, and to propose an algorithm to develop novel biangular-combined vegetation indices (BCVIs) for tracking CCC dynamics in wheat. The results indicated that spectral reflectance values, as well as the coefficient of determination (R 2) between mono-angular VIs and CCC, at back-scattering directions, were mostly higher than those at forward-scattering directions. Mono-angular VIs at +30° angle, were closest to the hot-spot position in our case, achieved the highest R 2 among 13 viewing angles including the nadir observation. The general formulation for the newly developed BCVIs was BCVIVI = f × VI(θ1) - (1 - f) × VI(θ2), in which the VI was used to characterize chlorophyll status, while the subtraction of VI at θ1 and θ2 viewing angles in a proportion was used to highlight the canopy structural information. From our result, the values of the θ1 and θ2 around hot-spot and dark-spot positions, and the f of 0.6 or 0.7 were found as the optimized values. Through comparisons revealed that large improvements on CCC modeling could be obtained by the BCVIs, especially for the experimental data, indicated by the increase in R 2 by 25.1-51.4%, as compared to the corresponding mono-angular VIs at +30° angle. The BCVIMCARI[705,750] was proved to greatly undermine the saturation effect of mono-angular MCARI[705,750], expressing the best linearity and the most sensitive to CCC, with R 2 of 0.98 and 0.72 for simulated and experimental data, respectively. Our study will eventually have extensive prospects in monitoring crop phenotype dynamics in for example large breeding trials.

19.
Small ; 18(21): e2200179, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35396783

RESUMO

Target therapy for highly heterogeneous cancers represents a major clinical challenge due to the lack of recurrent therapeutic targets identified in these tumors. Herein, the authors report a tumor-customized targeting photothermal therapy (PTT) strategy for highly heterogeneous cancers, by which 2D supramolecular self-assembled nanodiscs are modified with tumor-specific binding peptides identified by phage display techniques. Taking osteosarcoma (OS) as a model heterogeneous cancer, an OS targeting peptide (OTP) is first selected after biopanning and is demonstrated to successfully bind to this heterogeneous cancer cells/tissues. Successful conjugation of OTP to heptamethine cyanine (Cy7)-based 2D nanodiscs Cy7-TCF (2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran,TCF) enables the 2D nanodiscs to specifically target the heterogeneous tumor. Notably, a single dose injection of this targeted nanodisc (T-ND) not only effectively induces enhanced photothermal tumor ablation under near-infrared light, but also exhibits sevenfold increase of tumor retention time (more than 24 days) compared to generic nanomedicine. Thus, the authors' findings suggest that the combination of phage display-based affinity peptides selection and 2D supramolecular nanodiscs leads to the development of a platform technology for highly heterogeneous cancers precise therapy, offering specific tumor targeting, ultralong tumor retention, and precise PTT.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fototerapia , Terapia Fototérmica
20.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017154

RESUMO

BACKGROUND: Combination treatments with immune-checkpoint inhibitor and antiangiogenic therapy have the potential for synergistic activity through modulation of the microenvironment and represent a notable therapeutic strategy in recurrent ovarian cancer (ROC). We report the results of camrelizumab (an anti-programmed cell death protein-1 antibody) in combination with famitinib (a receptor tyrosine kinase inhibitor) for the treatment of platinum-resistant ROC from an open-label, multicenter, phase 2 basket trial. METHODS: Eligible patients with platinum-resistant ROC were enrolled to receive camrelizumab (200 mg every 3 weeks by intravenous infusion) and oral famitinib (20 mg once daily). All patients had disease progression during or <6 months after their most recent platinum-based chemotherapy. Primary endpoint was confirmed objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 based on investigator's assessment. Secondary endpoints included disease control rate (DCR), duration of response (DoR), time to response (TTR), progression-free survival (PFS), overall survival (OS), 12-month OS rate and safety profile. RESULTS: Of the 37 women enrolled, 11 (29.7%) patients had primary platinum resistant, 15 (40.5%) patients had secondary platinum resistant and 11 (29.7%) patients had primary platinum refractory disease. As the cut-off date of April 9, 2021, nine (24.3%) patients had achieved a confirmed objective response, the ORR was 24.3% (95% CI, 11.8 to 41.2) and the DCR was 54.1% (95% CI, 36.9 to 70.5). Patients with this combination regimen showed a median TTR of 2.1 months (range, 1.8-4.1) and a median DoR of 4.1 months (95% CI, 1.9 to 6.3). Median PFS was 4.1 months (95% CI, 2.1 to 5.7), and median OS was 18.9 months (95% CI, 10.8 to not reached), with the median follow-up duration of 22.0 months (range, 12.0-23.7). The estimated 12-month OS rate was 67.2% (95% CI, 49.4 to 79.9). The most common ≥grade 3 treatment-related adverse events were hypertension (32.4%), decreased neutrophil count (29.7%) and decreased platelet count (13.5%). One (2.7%) patient died of grade 5 hemorrhage that was judged possibly related to study treatment by investigator. CONCLUSION: The camrelizumab with famitinib combination appeared to show antitumor activity in heavily pretreated patients with platinum-resistant ROC with an acceptable safety profile. This combination might provide a novel alternative treatment strategy in platinum-resistant ROC setting and warranted further exploration. TRIAL REGISTRATION NUMBER: NCT03827837.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Farmacológicos/química , Carcinoma Epitelial do Ovário/tratamento farmacológico , Indóis/uso terapêutico , Pirróis/uso terapêutico , Adulto , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Feminino , Humanos , Indóis/farmacologia , Pessoa de Meia-Idade , Pirróis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...